Thursday, March 23, 2023
Wristwatch News
No Result
View All Result
  • Home
  • LATEST NEWS
  • AUCTIONS
  • BRANDS
WRISTWATCH
  • Home
  • LATEST NEWS
  • AUCTIONS
  • BRANDS
No Result
View All Result
Wristwatch News
No Result
View All Result

Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis

Rolex News by Rolex News
February 6, 2022
in Uncategorized
0
Home Uncategorized

Source:  Images and content by Rolex.  See the original article here - https://www.nature.com/articles/s41591-021-01663-5

https://media.springernature.com/full/springer-static/image/art:10.1038/s41591-021-01663-5/MediaObjects/41591_2021_1663_Fig1_HTML.png

RELATED POST

Rolex: Proud Sponsor of the Oscars®

Rolex Hosts The 2023 Oscars® Greenroom

  • Ichiyama, R. M. et al. Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J. Neurosci. 28, 7370–7375 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenger, N. et al. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci. Transl. Med. 6, 255ra133–255ra133 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wenger, N. et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat. Med. 22, 138–145 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brand, Rvanden et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asboth, L. et al. Cortico–reticulo–spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat. Neurosci. 21, 576–588 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gill, M. L. et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 24, 1677–1682 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65–71 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harkema, S. et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377, 1938–1947 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angeli, C. A. et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 379, 1244–1250 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danner, S. M. et al. Human spinal locomotor control is based on flexibly organized burst generators. Brain 138, 577–588 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Formento, E. et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 21, 1728–1741 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herman, R., He, J., D’Luzansky, S., Willis, W. & Dilli, S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 40, 65–68 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barolat, G., Myklebust, J. B. & Wenninger, W. Enhancement of voluntary motor function following spinal cord stimulation: case study. Appl. Neurophysiol. 49, 307–314 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dimitrijevic, M. R., Gerasimenko, Y. & Pinter, M. M. Evidence for a spinal central pattern generator in humans. Ann. N Y Acad. Sci. 860, 360–376 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • & Darrow, D. et al. Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury. J. Neurotrauma 36, 2325–2336 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerasimenko, Y. P. et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J. Neurosci. Methods 157, 253–263 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rattay, F. et al. Mechanisms of electrical stimulation with neural prostheses. Neuromodulation 6, 42–56 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capogrosso, M. et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J. Neurosci. 33, 19326–19340 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moraud, E. M. et al. Mechanisms underlying the neuromodulation of spinal circuits for correcting gait and balance deficits after spinal cord injury. Neuron 89, 814–828 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capogrosso, M. et al. A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539, 284–288 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capogrosso, M. et al. Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nat. Protoc. 13, 2031–2061 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yakovenko, S., Mushahwar, V., VanderHorst, V., Holstege, G. & Prochazka, A. Spatiotemporal activation of lumbosacral motoneurons in the locomotor step cycle. J. Neurophysiol. 87, 1542–1553 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cappellini, G., Ivanenko, Y. P., Dominici, N., Poppele, R. E. & Lacquaniti, F. Migration of motor pool activity in the spinal cord reflects body mechanics in human locomotion. J. Neurophysiol. 104, 3064–3073 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molnar, G. & Barolat, G. Principles of cord activation during spinal cord stimulation. Neuromodulation 17, 12–21 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minassian, K., Hofstoetter, U., Tansey, K. & Mayr, W. Neuromodulation of lower limb motor control in restorative neurology. Clin. Neurol. Neurosurg. 114, 489–497 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moraud, E. M. et al. Closed-loop control of trunk posture improves locomotion through the regulation of leg proprioceptive feedback after spinal cord injury. Sci. Rep. 8, 76 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gill, M. et al. Epidural electrical stimulation of the lumbosacral spinal cord improves trunk stability during seated reaching in two humans with severe thoracic spinal cord injury. Front. Syst. Neurosci. 14, 79 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greiner, N. et al. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nat. Commun. 12, 435 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neufeld, E., Szczerba, D., Chavannes, N. & Kuster, N. A novel medical image data-based multi-physics simulation platform for computational life sciences. Interface Focus 3, 20120058 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinany, N., Pirondini, E., Micera, S. & Ville, D. V. D. Dynamic functional connectivity of resting-state spinal cord fMRI reveals fine-grained intrinsic architecture. Neuron 108, 424–435 (2020).

    CAS 

    Google Scholar
     

  • Landelle, C. et al. Functional brain changes in the elderly for the perception of hand movements: a greater impairment occurs in proprioception than touch. Neuroimage 220, 117056 (2020).


    Google Scholar
     

  • Courtine, G., Nunzio, A. M. D., Schmid, M., Beretta, M. V. & Schieppati, M. Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans. J. Neurophysiol. 97, 772–779 (2007).


    Google Scholar
     

  • Roll, J. P., Vedel, J. P. & Ribot, E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp. Brain Res. 76, 213–222 (1989).

    CAS 

    Google Scholar
     

  • Pierrot-Deseilligny, E. & Burke, D. The Circuitry of the Human Spinal Cord (Cambridge University Press, 2005).

  • Lempka, S. F. et al. Patient‐specific analysis of neural activation during spinal cord stimulation for pain. Neuromodulation 23, 572–581 (2020).


    Google Scholar
     

  • Mignardot, J.-B. et al. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci. Transl. Med. 9, eaah3621 (2017).


    Google Scholar
     

  • Shokur, S., Mazzoni, A., Schiavone, G., Weber, D. J. & Micera, S. A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. Med 2, 912–937 (2021).


    Google Scholar
     

  • Edgerton, V. R. & Harkema, S. Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Rev. Neurother. 11, 1351–1353 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Courtine, G. & Sofroniew, M. V. Spinal cord repair: advances in biology and technology. Nat. Med. 25, 898–908 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morse, L. R. et al. Meeting proceedings for SCI 2020: launching a decade of disruption in spinal cord injury research. J. Neurotrauma 38, 1251–1266 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiavone, G. et al. Soft, implantable bioelectronic interfaces for translational research. Adv. Mater. 32, 1906512 (2020).

    CAS 

    Google Scholar
     

  • Barra, B. et al. Epidural electrical stimulation of the cervical dorsal roots restores voluntary arm control in paralyzed monkeys. Preprint at bioRxiv https://doi.org/10.1101/2020.11.13.379750 (2021).

  • Bonizzato, M. et al. Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nat. Commun. 9, 3015 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benabid, A. L. et al. An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 18, 1112–1122 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C.-L. et al. The relationship between sitting stability and functional performance in patients with paraplegia. Arch. Phys. Med. Rehab 84, 1276–1281 (2003).


    Google Scholar
     

  • Anderson, K. D. Targeting recovery: priorities of the spinal cord-injured population. J. Neurotrauma 21, 1371–1383 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrity, A. N., Williams, C. S., Angeli, C. A., Harkema, S. J. & Hubscher, C. H. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci. Rep. 8, 8688 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Squair, J. W. et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature 590, 308–314 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ditterline, B. E. L. et al. Beneficial cardiac structural and functional adaptations after lumbosacral spinal cord epidural stimulation and task-specific interventions: a pilot study. Front Neurosci. 14, 554018 (2020).


    Google Scholar
     

  • Soloukey, S. et al. The dorsal root ganglion as a novel neuromodulatory target to evoke strong and reproducible motor responses in chronic motor complete spinal cord injury: a case series of five patients. Neuromodulation 24, 779–793 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirshblum, S. & Waring, W. Updates of the International Standards for Neurologic Classification of Spinal Cord Injury. Phys. Med. Rehabil. Clin. N. Am. 25, 505–517 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roll, J. P. & Vedel, J. P. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp. Brain Res. 47, 177–190 (1982).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landelle, C., Ahmadi, A. E. & Kavounoudias, A. Age-related impairment of hand movement perception based on muscle proprioception and touch. Neuroscience 381, 91–104 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kavounoudias, A. et al. Proprio-tactile integration for kinesthetic perception: an fMRI study. Neuropsychologia 46, 567–575 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leener, B. D. et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145, 24–43 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gros, C. et al. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization. Med. Image Anal. 44, 215–227 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen-Adad, J. et al. Venous effect in spinal cord fMRI: insights from intrinsic optical imaging and laser speckle. Neuroimage 47, S186 (2009).


    Google Scholar
     

  • Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gros, C. et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage 184, 901–915 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eippert, F., Kong, Y., Jenkinson, M., Tracey, I. & Brooks, J. C. W. Denoising spinal cord fMRI data: approaches to acquisition and analysis. Neuroimage 154, 255–266 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooks, J. C. W. et al. Physiological noise modelling for spinal functional magnetic resonance imaging studies. Neuroimage 39, 680–692 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, Y., Jenkinson, M., Andersson, J., Tracey, I. & Brooks, J. C. W. Assessment of physiological noise modelling methods for functional imaging of the spinal cord. Neuroimage 60, 1538–1549 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component-based noise correction method (CompCor) for BOLD and perfusion-based fMRI. Neuroimage 37, 90–101 (2007).


    Google Scholar
     

  • Kasper, L. et al. The PhysIO Toolbox for modeling physiological noise in fMRI data. J. Neurosci. Meth 276, 56–72 (2017).


    Google Scholar
     

  • Woolrich, M. W., Ripley, B. D., Brady, M. & Smith, S. M. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14, 1370–1386 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woolrich, M. W., Behrens, T. E. J. & Smith, S. M. Constrained linear basis sets for HRF modelling using variational Bayes. Neuroimage 21, 1748–1761 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez‐Perez, S. L. et al. Measuring abdominal circumference and skeletal muscle from a single cross‐sectional computed tomography image. Jpen-parenter. Enter. 40, 308–318 (2016).


    Google Scholar
     

  • Schirmer, C. M. et al. Heuristic map of myotomal innervation in humans using direct intraoperative nerve root stimulation. J. Neurosurg. Spine 15, 64–70 (2011).


    Google Scholar
     

  • ShareTweetPin

    Related Posts

    Rolex: Proud Sponsor of the Oscars®
    Uncategorized

    Rolex: Proud Sponsor of the Oscars®

    March 8, 2023
    Rolex Hosts The 2023 Oscars® Greenroom
    Uncategorized

    Rolex Hosts The 2023 Oscars® Greenroom

    March 8, 2023
    New Rolex watches 2021 | Newsroom
    Uncategorized

    Oyster Perpetual Datejust: A date with destiny

    February 16, 2023
    New Rolex watches 2021 | Newsroom
    Uncategorized

    Rolex Perpetual Planet Initiative Under The Pole: Deeplife — Svalbard Expedition

    February 16, 2023
    Successful first Great Spine of Africa expedition to document and protect river that feeds the Zambezi led by Rolex Perpetual Planet Initiative partner explorer Steve Boyes. Through its Perpetual Planet Initiative, Rolex is supporting Steve Boyes’ Great Spine of Africa series of expeditions, traversing thousands of kilometres of rivers that have never been scientifically documented.
    Uncategorized

    Successful first Great Spine of Africa expedition to document and protect river that feeds the Zambezi led by Rolex Perpetual Planet Initiative partner explorer Steve Boyes. Through its Perpetual Planet Initiative, Rolex is supporting Steve Boyes’ Great Spine of Africa series of expeditions, traversing thousands of kilometres of rivers that have never been scientifically documented.

    February 3, 2023
    Rolex welcomes 2023 with the time-honoured vienna philharmonic new years concert
    Uncategorized

    Rolex welcomes 2023 with the time-honoured vienna philharmonic new years concert

    December 29, 2022
    Next Post
    “Les Collectionneurs” Singapore, 7 – 28 February 2022

    "Les Collectionneurs" Singapore, 7 - 28 February 2022

    • Terms and Conditions
    • Privacy Policy
    • Contact

    ©2022 Wristwatch.News - All rights reserved.

    No Result
    View All Result
    • Home
    • LATEST NEWS
    • AUCTIONS
    • BRANDS

    ©2022 Wristwatch.News - All rights reserved.